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SURZBIARY 

When dilute solutions of finite size particles undergoing Brownian motion flow 
through a capillary, the larger particles have higher average velocities than the smaller 
particles. Thus one can obtain a separation of particles of different, sizes due to fluid 
flow. The elution volumes of suspended. particles or polymer molecules are derived for 
various tube geometries. FollowingT~~~~~, the effects of diffusional broadening of the 
volume elution peak for finite size particles are discussed and the process is shown 
to be chromatographic. 

Models of a gel permeation chromatographic column are proposed in which 
there is fluid and particle flow through each of the beads as well as around them. 
Diffusion is allowed within and outside of the beads. Equations for the location of the 
volume elution peaks are computed for such models and shown to yield functional 
dependence on the polymer radius and column geometry very’much like equations 
derived by previous workers for m.odels of gel permeation chromatographic columns 
in which there was no flow allowed within the beads. Explicit formulae are given for 
the second and third moments for the above models. It is shown that for a mono- 
disperse species the volume elution peak is always a gaussian of a finite width. It is 
shown that beads with open pores that allow for flow always have better separation 
capabilities than beads with pores that do not allow for flow. 

I. INTRODUCTION 

An isolated polymer molecule flowing down the inside of a thin capillary and 
undergoing Brownian motion will have an average velocity greater than that of the 
solvent, This is because the center of the particle (assumed to be a rigid sphere) cannot 
get any closer to the walls of the capillary than its radius. It therefore samples only 
those solvent velocities away from the walls. Since the solvent velocity is larger, the 
farther the distance from the wall, larger molecules will have larger average velocities 
than smaller molecules. See Fig. I. 

Suppose we now introduce particles of two different sizes simultaneously at the 
top of the column. The average distance between these particles will increase linearly 
with time as they flow through the tube because they have different average velocities. 
On the other hand the peak widths of the distribution of particle distances about 
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their mean value for each kind of particle increases as the square root of time. This 
is a characteristic of particle diffusion. It therefore, follows that by waiting for suf- 
ficiently long periods of time the separation between peaks can be made large com- 
pared to the width of the peaks. The particles therefore separate into two groups. 

These ideas have been placed on a firm quantitative foundation in a previous 
paper?. The main results for a single capillary are recapitulated in Section 2. 

FLUID 
,VELOCITY 

PROFILE 

I-POLYMER 

UNAVAILABLE 
VOLUME 

Fig. I. Schematic of flow clown a single tube. The fluid velocity profile causes polymer separation 
by virtue of the unavailable volume. 

Because the elution characteristics of a single capillary are very much like 
those of gel permeation chromatographic (GPC) columns we were led to consider the 
elution properties of various networks of ‘capillaries (combinations of capillaries in 
series and in parallel). The main results are summarized in Section 3. A complete 
paper on this aspect of the problem has appeared elsewheres. 

A particular combination of tubes is considered as a model for GPC (see Fig. 2). 
In this model there are tubes of two diameters. The large tubes represent flow between 
the beads (interstitial flow) of a GPC column, and the small tubes represent flow 
through (intra-bead-flow) the beads. The idea that there is flow within the bead as 
well as .around it is essential to the applicability of the separation by flow (SBF) 
concept to GPC. In Section 3 we also discuss the application of SBF to GPC. 
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Fig. 2. The bank model of a GPC column. The large tubes in a given I bank (on left) represent the 
totality of interstitial regions at that same level in the column (on right). The small tubes in this 
bank represent the totality of fine tubes within the beads at this same level. The space bctwcen 
banks serves as a mixing region and is not considered to have any volume. 

2. SEPARATION BY FLOW IN A LONG TIiIN CAPILLARY 

A. Volume elutiost 
The velocity 

flow is 
ZJ~ of solvent flowing down a tube of radius r, under Poiseuille 

r .W 1 
Vf = - - (Vo2 - @) 

4rl al? 
(1) 

The velocity of the center of mass of a polymer molecule, vp, has been derived 
under the free draining assumptionl. 

-_ = 2 /zJ2 Vf - vp 
UO 3 \rol 

where zc, is the fluid velocity 
The radius of gyration 

(2) 

along the axis of the capillary. 
is s. It was found that the molecule does not migrate 

radially (unless there is diffusion), but is retarded by the amount in eqn. 2. HAPPEL 

AND BYRNE have derived a relation for the slip at the axis of a cylindrical tube of 
radius r, for rigid impermeable spheres of radius s. They obtain 
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This relation is identical with ours if we identify the radius of the sphere with the 
radius of gyration of the molecule. Eqn. 3 has been confirmed experimentally by 
GOLDSMITH AND MASONS. We can now evaluate the average velocity and therefore 
the elution volume. Because of entropy forces a polymer molecule will tend to main- 
tain its shape as it flows down the tube. That is to say, if we deform a polymer mole- 
cule from its spherical shape by means of an external force, a restoring force is set up 
by the polymer which acts in a direction so as to restore the shape. It is for this reason 
that the center of mass of the polymer molecule cannot approach too closely the walls 
of the tube down which it flows. We are thus led to define an effective radius, a, for 
the polymer. For flexible polymer molecules it has been shown that this radius is 
related to the radius of gyration, s, by 

If Brownian motion in a direction perpendicular to the axis of the tube is al- 
lowed, then the center of mass of the polymer molecule will sample every_possible 
horizontal position in the tube with equal probability, except for the fact that it 
cannot be closer than a distance, a, to the wall. We obtain then for <v,>, the average 
velocity of the polymer, in a circular cylinder 

‘, ,v,, = u. (O-U [lL(y _-y 

cv,> = uo I: (1 - a/ro2) 
I---- 

2 
Y 

where 

circular cylinders (5) 

We have let r, be the radius of the cylinder and rc the distance from an axis down the 
center of the tube to the particle center of mass. It should be noted that zcO as defined 
in eqn. 5 is the maximum velocity of the fluid in the tube. The y in eqn. 5 is defined by 
‘ 

ya2 = 2@/3 (6) 

For flexible polymer molecules y = 2n/27. However, in general, y is a function of 
the shape of the particle as well as the density distribution within the particle. For 
this reason we retain y as a parameter. In a similar manner we obtain for parallel 
plates 

<VP> 1 uo 
[ 

(1 - a/.@) y a 2 
I------ 

3 ( )1 
- 

2 20 
plates 

where for parallel plates 

ap co2 ugzz-- 
ad 2~ 
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The elution volume, ve, is the fluid volume flow rate, Q, times the time needed 
passage of the polymer through the capillary, t. Thus, for a tube of length L 

We obtain then 

v xlqp 
e = --------- 

(I-R)2 
---_--,R2] 

circular cylinders 

2 

87 

for 

(8) 

(9) 

v ad (! = --------A- 

3 

[ 
(1 - R)2 

’ R2 1 
plates (10) 

4 
I------_-_--_ 

3 2 

In eqn. g, R = a/r,,, while in eqn. IO it is R = a/zO. Thus, the elution volume is equal 
to the elution volume of solvent times a factor which is a function only of R and the 

geometry of the capillary. 
In Fig. 3 the effect of varying y on the elution volume of a circular cylinder is 

given ; for convenience we have let nlr02 equal I in this figure. We have plotted Vve vs. 
3 log R in the figure since Ra is nearly proportional to the so-called hydrodynamic 
volume of the polymer. We pointed out previously6 that the features of the curves 
given here are similar to the log hydrodynamic volume VS. volume elution curves of 
GRUBISIC et ul.6, found experimentally for a GPC column. We wish to emphasize here 
the similarity of the curves for R < 0.2. Clearly for this region we have an insensi- 

tivity to y in the I/‘, Vs. 3 log X plots. 
In Fig. 4 we have plotted I/, VS. 3 log X for three different cross sections of tubes; 

0 

-1. 

-2 
tx 

g -I -3 
m 

-4 

..L _ 

-6 

---r ----l---- -----I-- 

I I I 8 I t 

1.4 0.5 0.6 0.7 0.8 0.9 

ELUTION VOLUME V, ELUTION VOLUME v, 

Fig. 3. A plot of the normalized elution volume vws~~cs the logarithm of the cffectivc particlc volume 
for separation in a. single circular cylinder is shown. The effect of varying y, the pnrametcr relating 
to the magnitude of the rctnrclntion effect, is seen to bc small below R = 0~4. R is clcfinccl as a/v,. 

Fig. 4. A plot of tllc norrnalizccl clution volume vwsus the logarithm of the effective particle volun~c 
(with y = o) for various tube gcomctrics for ;1. single tube is shown. Notice the gcncral Shape of 
the curve is insensitive to the gconletry. R is definccl as u./lO. 
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we have normalized all the curves to V’e = I for X = 0. In this plot we see that al- 
though the parallel plates result is different from the others, the shape of the curves 
show a general insensitivity to cross section for smaller X’s 

Neglecting the retardation effect (y = o), the ratio of maximum to minimum 
elution volume is 2 for circular cylinders and 1.5 for parallel plates. It is interesting 
to compute this ratio for tubes of various other cross sections. This is done by com- 
puting the ratio of maximum velocity to average velocity. We obtain, for a square 
cross section 2.5, for an elliptical cross section 2.0 (independent of the eccentricity of 
the ellipse), and for equilateral triangle 2.2. Thus, one might expect the effect of 
different cross section on volume elution is a small one. 

TAYLOR had addressed’himself to the problem of dispersion of soluble matter in 
solvent flowing through a circular cylinder’. ARIS has extended the results to cylinders 
of arbitrary cross section 8. Their problem is identical with ours except for one factor: 
the size of the molecule. They assumed that the soluble matter is made up of point 
particles, while we assume our soluble matter is made up of particles of finite size. * 

We have adopted their 
molecules. The starting point 
medium. 

ac 3+ 

Dv2C=$-v*“C 

where C is the concentration of solute particles, T is their velocity, D their diffusion 
constant, and t time. Eqn. II is a generalization of the ordinary diffusion equation to 
a moving medium. The main result of TAYLOR and ARIS can be described as follows. 

treatment to’ the solution of the problem for finite size 
is the three dimensional ‘diffusion equation in a moving 

(11) 

Suppose we define Cm to be the mean concentration over the cross-sectional area 
whose normal is parallel to the axis of the cylinder. Then CVrb is found to obey a one 
dimensional diffusion equation. 

aw, aen, 
K- 

ax2 = -aT 

with an effective diffusion coefficient K, 

K 
a&@ 

=D+&--D- 

(12) 

(13) 

The coordinate system of eqn. IZ moves along with the average velocity of the 
particle and the direction along the tube is the x direction. 0 is a number which de- 
pends on ‘the cross sectional geometry and has value 1/192 for circular cylinders and 
r/r20 for parallel plates. For parallel plates one replaces r, by z,,; in both cases uO is 
the maximum fluid velocity in the tube. The effective diffusion coefficient K has an 
ordinary part D resulting from longitudinal diffusion and a part 8z@r,-,2/D which 
results from transverse diffusion and simultaneous smearing due to the fluid velocity 
profile. The, shear gradient causes material at different levels in the tube to travel at 
different velocities thereby smearing the particles over large longitudinal distances; 
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Thus this effect increases with increasing 26,. However, the rate at which particles 
sample various levels is important; if the particle sampled quickly (D large) then there 
would be only a small amount of smearing since the longitudinal velocity of each 
particle is the average velocity. However, if the particle sampled the various levels 
slowly then there would be much smearing. This is the reason for the inverse de- 
pendence in D in the second term of eqn. 13. This term is the dominant one for many 
situations of interest. Thus, the larger the diffusion coefficient, the smaller the 
spreading in the elution volume peak! 

The only effect of particle size is to scale the quantities ZQ, and r,,, (2,) as follows. 

llQ -> at0 py’ circular cylinders (14) 

20 +(20-a) 

,IfO -> ‘MO (y)2 parallel plates (IS) 

Eqns. 12 and 13 are now applicable with the substitution afforded by eqns. 14 and 15. 

C. Inl~jblications of the equations and fawther results 
Separation by flow occurs in the capillary considered in sections 2 A and B. 

The average distance traveled by molecule i down a tube in time t is < vp>rt; then the 
distance between peak centers for two substances I and 2 is 

ha = I<V,>l -<v,>zll (16) 

Because of diffusion, the elution volume peaks become spread out in time. But as is 
always the case for diffusion,, the width of the peaks are proportional to d/t rather 
than t. Thus, if one waits for a long enough time, either by using a long tube or equiv- 
alently by recycling through one tube, one can always separate the two materials. 

From eqns. g and IO we observe that the elution volume peak is a function 
only of the effective radius of the particle and of the geometry of the tube. It is in- 
dependent of both viscosity of the fluid and the diffusion coefficient of the molecules. 
It also does not depend on the pressure head and the flow rate through the tube. If 
we flow different molecules through the same tube then the only pertinent variable 
is the effective radius. We have already pointed out1 that the effective radius cubed 
of a polymer is nearly proportional to its hydrodynamic volume. Presumably then 
we have a method of characterizing molecules on the basis of hydrodynamic volume 
alone, For rigid rods also, the only pertinent variable for volume elution is hydro- 
dynamic volumel. 

The validity of the concept of separation by flow is independent of the detailed 
assumptions used in deriving the specific formulas. It is, for example, not necessary 
for us to have a quadratic dependence of fluid velocity in a circular cylinder. All that 
is required is that we have on the average a larger velocity toward the center than 
at the boundary of the tube. It is not necessary even to have Brownian motion, All 
that is needed is a mechanism whereby the particles sample various levels in the tube. 
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Turbulence for example might replace Brownian motion as the mode of sampling. 
If one attempts to use a bundle of identical capillaries as a practical method of 

separating polymer molecules of molecular weight 106 or less one finds that it is 
impossible to choose reasonable values of the parameters, tube size, numbers, and 
length. One cannot have both good separation which requires narrow capillaries and 
large flow which requires wide capillaries. For this reason we were led to the study 
of combinations of large and small tubes in series and in parallel. The bank model 
discussed in the next section provides both excellent separation capabilities and large 
flow rates. 

3. ELUTION CHARACTERISTICS OF NETWORKS OF CAPILLARIES; APPLICATION TO GPC 

Ideally, we would like to solve the problem of flow through an arbitrary com- 
bination of tubes of various diameters, widths and numbers. We have not been able 
to do this. But we have solved the problem for a more restricted class of networks 
which we have called “bank models”. These models are useful in their own right as 
objects to be constructed, and also because they seem to be good models for GPC 
columns. 

A. Dsscri$dion of the models 
In this sectionwe shall describe some models for a GPC column. A GPC column 

is made up of fine gel beads (ca. 50 ,u in diameter) packed together. The beads are por- 
ous; we assume that the pores go through the entire bead. Thus we assume the carrier 
fluid’ flows around, into and through the beads. 

The surface of the beads divides the system into two regions; that within the 
beads and that outside. In this picture of the column the region within the beads is 
viewed, for the purpose of calculation and simplicity, as made up of small open 
cylinders, all of radius Y a, and all of length 1. We assume, naively, that each cylinder 
is of uniform radii and that no cylinder intersects another. These cylinders are assumed 
aligned in. one ‘direction and this direction is chosen as the direction of fluid flow. 
The number,of small tubes per unit volume is chosen so that the total volume within 
small tubes is the same as that available to solvent within the beads. Furthermore 
these tubes must be bunched together so that the distance between bunches is com- 
parable to the size of the interstitial region between beads in the real column. Thus 
both flow and diffusion are allowed within the beads as well as within the inter- 
stitial region between beads. Initially, none of the tubes will be closed. Thus there is 
no stationary or .stagnant volume in our ‘system. This restriction is easily removed. 

The above model does not yet specify a detailed geometry for the system. We 
have purposely maintained generality because the method used to compute the 
broadening and skewness does not require a detailed specification. However in order 
to calculate average elution volumes as is done we have need of a more specific model. 
This latter model is a series of banks of tubes separated by mixing regions (see Fig. 2). 
We shall refer to this model as’ the bank model. Each bank is made up of parallel 
arrays of ,righ+circular cylinders of different radii ; the fluid flows through the cylinders 
(rather than around t.hem). For concreteness one can view each bank as a membrane 
riddled with holes. For clarity of presentation we assume there are tubes of only two 
radii, ~2 and Y8; their numbers in each bank are NZ and N, and their length d. The 
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banks are thus all identical and there are ?z of them, This series of gz banks is called 
a column. 

The path of the particle through the column is as follows. A pressure head Ap 
forces the particle (which is suspended in carrier fluid) through the column from top 
to bottom. The particle emerges at time t later after having traversed @Al large tubes 
and q+8 small ones. We assume that particles in the mixing region lose memory of 
the tubes they came out of. Accordingly the probability $8 of a particle jumping into 
and through the tubes of the next bank (i = I,s) is independent of which tube it 
emerged from. This assumption will be more valid for larger diffusion coefficients 
and less valid for smaller diffusion. coefficients. Its validity is also a function of the 
actual geometry of the system. For example, if all the large tubes were bunched to- 
gether at one end of the bank (membrane) and the small tubes at the other end, 
one would expect that by piling the banks in register one could have large tubes in 
one bank vertically above large tubes in the adjacent banks. Consequently, particles 
coming from large tubes would tend to go into large tubes and so on. One obviously 
minimizes this effect by mixing the tubes within each bank. 

The above bank model can be viewed in its own right as an object of study, 
or as a model for GPC. As a model for GPC, the large tubes represent the flow region 
outside of and around the beads; the small tubes represent pores in the beads. Any 
particle emerging from a small tube has the option of choosing to go into a small tube 
again (into a bead) or into a large tube (flow around a bead). Thus the totality of 
small tubes in one bank represents all the pores in all the beads at one level in the 
GPC column, and the totality of big tubes in this bank represents all the regions be- 
tween beads at this same level. The length of the tubes is proportional to the diameter 
of the beads. 

The elution characteristics of the bank model have been calculated in our pre- 
vious paper2. We have shown that the elution volume peak for a single species is 
Gaussian and have evaluated its first three moments. The procedure used is an 
adaptation of the method of HERMANS 0. HERMANS allowed diffusion into and out of 
the beads while we have allowed both for flow through the beads and diffusion. 
Furthermore, we have evaluated the particle size dependence of the first moment 
(elution volume) in both the high fluid flow and low fluid flow (equilibrium) limits. 
One should consult ref. 2 for details. Here we will quote only the results. _’ 

<t> 
-= I-t_ 1 

(I- 
. . w <vp>i 

- 3(1 - 4)P 
q4k <1)&Q <71.,,>i 

[ 

--__ 

(,,b,) 

- -_____ 
P 8 2 

s c* > 

I <V,>, 
sin112 --- 

213, 

I 
-- 

3 1 19) 
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<vp>i = <v,>r 
[ 

(1 - 4) <UP>8 
I------ 

&z <up>1 1 (20) 

D8 
26,2( I - a/r#ye2 

=Da-j-- -- 
IwDa 

(21) 

E in eqn. (18) is the Langevin function, g(x) = coth (x) - I/X. The length of the 
column is x and <t> is the average time spent in it by the elutant. 4 is the fraction 
of flowing volume in large tubes, < z)~>z and < vP>* are the average velocities in large 
and small tubes. p2 and ,U~ are the second and third moments about the mean for the 
time spent in the column. I is the length of the capillaries (in each bank) of which 
there are two types of. radius rs and YJ and the number of banks is, of course, x/Z. The 
diffusion coefficient of the molecule of radius a is Da, The maximum velocity of solvent 
in the small tube is %8 and an expression identical to ejn. 21 with m replacing s holds 
for D,. The value of the quantity k depends on the flow rate through the system. In 
the limit of slow flow we have 

I 

z = K, = (I - a/Ye)2 a 5 ra 
(22) 

Kd = 0 a 2 re 

For other shapes of tubes one replaces (I - a/re)2 by the appropriate partition co- 
efficient. 

In the limit of fast flow one has 

I 

z = IC, = I I[ 2-(I-a/r#-zy 
a 2 ( >I - 
yx 

a I; r8 (23) 

KS = o a 2 v8 

We have not been able to derive an expression for all flow rates, but an heuristic 
argument given previously suggests 

I 
- = K 
k 

= l<f(I - exp (- 268 ZIBD,) 1 + Ice exp (- WPD,) (24) 

where fl is a parameter near I. The above moments (for the time it takes a particle 
to elute out of a column) are related to moments for the volume elution, ‘Ir,, 

We obtain 

<(Ve- b2> _ ((12 

Fe2 -cd>2 

(25) 

(26) 

<( Ve - feY> = _pK 

<(Ve- i&3/3 
p2313 

(27) 
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II’ = 
[ 

(1 - 4) ’11s 
If--- 

46 w 1 ---_ 
0 

I- 
[ 

(1 - $6) <v,>n ---- 
lzd, <V,>l 1 

93 

(W 

The quantity 6’ is always close to I for any system of interest. V on the right hand 
side of eqn. 25 is the total volume in small and large tubes. We have also shown that 
the elution volume peak is Gaussian. 

C. Discussion of resadts 

In Fig. 5 we have plotted 310g (n/r,), the logarithm of the cube of ratio of the 
particle radius to that of the small tube, VCYSZCS the volume elution for various frac- 
tions of the volume available in the large tube, +, in both the flow limit and equilibrium 
limit. The variable (a/r,)3 is proportional to the hydrodynamic volume of the polymerlo. 

-5- 

-6- I t I t t I 
0.1 0.2 0.3 9.4 015 0.60.7 0.8 0.9 1.0 

b/V 

Fig. 5. Volume elution, Ve, VCYSZ~S log size (hydrodynamic volume) for the bank model for both 
the equilibrium and the flow limit for various vnlucs of 4 the fraction of volume in the interstitial 
region. T/ is total. volume available to solvent. 

The reader should notice that for small (a/r,) the flow limit and the equilibrium limit 
are the same; one should also notice that the curves are similar in shape to experi- 
mental volume elution ve~s2cs logarithm hydrodynamic volume curves of single column 
GPC systems. Clearly we could reproduce other experimental curves by suitable choice 
of a distribution of small tube sizes. (This statement is meant to suggest the sufficiency, 
not necessity, of the theory since others have produced such curves. Also see part D 
of this section.) 

As we pointed out in Section 3 B, we have only derived the volume elution 
V~YSUS particle size equation in the limit of high flow and in that of low flow (equi- 

*/* Cllrowx7lo~,, 55 (1971) 53-97 



94 E. A. DIMARZIO, C. M. GUTTMAN 

librium). We also pointed out that from considerations of a single tube one might 
expect the more general volume elution equation as a function of flow rate V,(zc,) to be 

~e(%J = v + KV, (29) 

K = OK, + ( I - O)Kf 

0 = exp (- ue@Da) 

In Fig. 6 we have plotted ‘Ir,, - I/re(M8 = o), (LW,), for various a/r, as a function 
of 2c81//?Da (we generally expect p N I). For large molecules &/Da is about 3 (tie = 
(r.&~)s ZCJ = 104 cm/set, I = 30 microns, Da = IO-' cms/sec) while for small molecules 
a&I/Da = 3 x 10-2 (all parameters the same except Da = 10-5 cms/sec). Clearly ex- 
cept for large a/r, we see very small changes in V, as a function of flow except for a 
very high flow rate. 

Fig. 6. Here WC have plotted our estimate of the fractional change in volume elution as a function 
of u,Z/pD,. A lfc is the difference between the actual volume elution and that at zero flow (Ve(rc, = o) ) , 
For small a/v, the change is minimal. These results are for a. bank with only one size small tube; 
j9 is cstimslted to be one or two. 

Our expression for the peak width eqn. 18 is similar to that derived by HER- 
,MANS~ and indeed our expression includes the case of diffusion (diffusion only) as a 
limiting case. In Fig. 7 we have plotted the ratio of this expression to that obtained 
in the limit of zero flow. The ratio is always less than or equal to I. This means that 
separation is always improved by using tubes with flow rather than tubes blocked 
up so that there is no flow. 

The HETP (height equivalent theoretical plate) of a chromatographic column 
is normally defined as (V, -’ a,)s/v,, the dispersion in the volume elution divided by 
the volume elution. For small &/Da our expression for that part of the dispersion 
arising from the dispersion in small beads is similar to that obtained by others. For 
larger velocity and/or small diffusion coefficients the functional form changes dra- 
matically. In Fig.’ 8 we have plotted the quantity (V, - V,)s/[V,(v, - va)] vwsus 
zc,Z/zDa for various ratios of bead size to small tube radius, I/r,. The (V, - Vl) in 
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-3- 
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-3 -2 -1 0 1 2 3 4 5 6 
log (<I++ I/20, 1 

Fig. 7. Plot of the log of the ratio of second moment computed here to the second moment when 
no flow is allowed in the small tubes (the HERMANS limit) PH as a function of the log (zD,/Z <v,>,) 
for Z/Y* from 5 to IOO. The quantity (2DJZ <v,>“) is essentially the ratio of the time for a particle 
to be flushed out of bead to the time it takes it to diffuse out. When that ratio is greater than one, 
the time to diffuse is smaller than the flush time. Our result goes to HERMANS result. For this 
ratio lass than one, the dispersion from our calculation is less than that from HERMANS'. (Notice 
this curve shows the ratio of ~//AET as a function only of (;?D,/Z<v,>,). This is true for the range of 
(2D,/Z<v,>) we have chosen. For (2D,/Z<v+,) > JO -CJ effects of changes in V# are seen), 

Fig. 8. Plot of logarithm of the Langevin function &(<v,>J/zD,) (where 13, = I), + (~6~ raa/r92 Dn) 
VCYSZCS <u,>,Z/213, for various Z/V~, The Langevin function is proportional to that part of the HETP 
arising from the dispersion inside the beads. Notice for small <v,,>,Z/2D, the curves are identical. 
This is the low velocity-high diffusion constant region and yields increasing dispersion as 
<v,>,Z/zD, increases; in the high flow-small diffusion constant region, the dispersion decrcnscs 
for incre‘asing flow. The slopes of the shoulders of the curves are f I. 

the dispersion expression is the difference between the V”e and Tr,, the volume elution 
of particles to big to go into the small tube. With the inclusion of this term in the 
expression for the dispersion, the only variable for a column of a single size of small 
tubes is < v),l/zDa. Thus we might expect that for a single column (except for some 
weak size dependence in < ZJ,>,/U~), u8/& or, thus, ti~/Da, the fluid velocity over the 
diffusion constant, is the important variable. One would expect the data for this 
part of the dispersion to scale that way. 

The reader should notice that for small I( v~>~/~D~, the curves in Fig. CJ are 
identical. For larger 1< ~9,>~/2D~ they clearly break away from each other; for all 
curves however as I <vp>*/2Da gets above I the dispersion is either a constant or 
decreasing as < v~>~/D~ increases. This is in contradistruction to the results obtained 
at smaller < ZJ~>~/D~, Thus one might expect for a given column system that the dis- 
persion for small molecules would increase for increasing ul while that for large 
molecules (low diffusion constant) would decrease or remain constant for increasing 
ti8. Such results have been Gbservedff. 

J. Cltronlnlo&!*, 55 (1971) 83-97 



E. A. DIMARZIO, C. M. GUTTMAN 

Fig. CJ. A plot of the logarithm of the hydrodynamic volume vevszts V,/ V for 4 = o for a distribution 
of tube sizes (see eqn. 32). Notice as the ratio of the largest small tube to the smallest small tube, 
B, increases, the length 6f the linear portion of the curve increases, (For B = IOOOO the curve is 
linear from 3 log (akY8) = - 3 to 3 log (a/rJ = - 13). 

D. A&!dication to distribactiom of t&e sizes 
Our equations are easily modified to include distributions of tube radii for the 

small tubes in each bank. Denoting the normalized distribution by g(r) so that 
V8g(r)dr is the volume of cylinders of radius Y within dr we have 

f 

co. OY 

7, = Vl + ‘vt7 g(r)x(a/Y)clr = vz + v, s h?(+w(4~W 
0 a 

The use of u as the lower limit of integration is permissable because K(a/r) = o for 
a > v. Eqn. 30 is valid if most of the flow is in the big tubes (interstitial region of the 
beads) which are not part of the distribution function g(r). It is obvious from eqn. 30 
that’the shape of the volume elution curve is very much dependent on g(r) as well 
as K(a/r). A choice of g(r) which makes the equilibrium volume elution curve linear 
as a function of the logarithm of the hydrodynamic volume is 

g(r) = III? In WI 
= 0 elsewhere 

where 

B = r2lr1 

We obtain with use of eqn. zz, 

t, = Vl + v* -In (a/r2) (3 - alr2) (I --alr2) 
_--- 

In B aln B 3 
r~ S a s r2 

7, = vt + ‘v, 
( 
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SEPARATION RY FLOW AND ITS APPLICATION TO GPC g7 

A plot of this function for various values of 13 is shown in Fig. g. These curves have 
a much larger linear portion than those of Fig. 6. It is obvious from this example and 
the form of eqn. 30 that one can obtain a wide variety of elution volume curves by 
a judicious choice of g(r). 

There is an interesting insensitivity to the specific form of I<(@) that occurs 
when g(r) is a very broad distribution function. This insensitivity is due to tile step 
character of K(a/r) (that is, that for a > Y, I< = o, and for a < r I< = I). Thus if 
g(r) is so broad that most tubes have either r < a or Y > n for all a then Y, of eqn. 30 
will not be sensibly changed by use of a step function in place of the correct functional 
form. For example, with a step function for I<(a/r) and for the g(r) given by eqn. 31 
we obtain 

(33) 

which is not much different from eqn. 32 over a wide range of values of a. To the estent 
that elution volume is insensitive to the difference between, I< and the step function 
O(a/r) we can say that the exclusion aspects of the formulation dominate. 

E. Gcmralizntiom of the bank model to n combinatdoz of blocked and o#-vt cn;fillaries 

If one allows a certain fraction of the small capillaries to be blocked up so that 
diffusion into and out of them is allowed but flow through them is disallowed then 
one obtains a more general model. I’n general one would espect that in GPC columns 
cavities of both types occur in the beads. 

The average elution volume of such a column is identical in the equilibrium 
(slow flow) limit with that of the model in which there are only open tubes. Eqns. 17 
and 25 remain valid with the substitutions afforded by eqn. 22 for I<,. Tllus average 
elution volume is insensitive to whether there is flow through the capillaries. 

Our equation for the second moment is now replaced by a sum over the two 
kinds of tubes. For the open tubes I - (G is replaced by the fraction of volume of tubes of 
the open type (4 which is the fraction of volume of big tubes is unchanged). For the 
closed tubes I - $ is replaced by the fraction of volume of tubes of the closed type 
and also the Langevin is replaced by its argument. The effect of this replacement is to 
increase the broadening. This means that the elution characteristics are always im- 
proved by use of open-end’ pores rather than dead-end pores. 
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